Регуляция работы генов

  Откуда клетка знает, какой белок производить и в каком количестве?
  В начале каждого гена расположен сегмент ДНК, который содержит контролирующие элементы именно этого гена. Этот сегмент называется промотор. Он выполняет функции "сторожевой башни", поднимая "флаг", то есть подавая сигнал контролируемому им гену. Возьмем, например, выработку инсулина (который мы производим, чтобы обеспечить сжигание сахара в крови). Когда в клетке появляется информационная молекула с сообщением "больше инсулина", вырабатывается молекула-посредник, которая связывается с инсулиновой сторожевой башней. После этого "рычажок" сторожевой башни перемещается и открывает путь считыванию инсулинового гена.

  Как информация, содержащаяся в ДНК, превращается в белки в нужное время?
  Каждый ген состоит из трех основных компонентов: "сторожевой башни" (промотор), информационного блока и поли-А сигнального элемента.
  Если в клетке недостаточно какого-то протеина, то ядру направляется сообщение найти соответствующий ген. Если сторожевая башня признает полученное сообщение, то будет послан сигнал открыть "ворота" информационному блоку. Информация тут же копируется - или считывается (транскрибируется) - в нитевидную молекулу, которая называется РНК. РНК очень похожа на ДНК, только она представляет собой одну цепочку, а не две. После того, как информация была скопирована, к концу молекулы прикрепляется хвост в 200 нуклидов типа А. Этот процесс называется полиаденилированием, а начинает его поли-А сигнал, расположенный в конце гена. Поли-А хвост помогает сохранить информационные РНК в ядре на ограниченное время. После этого копии гена (РНК) выходят из ядра в цитоплазму и связываются с мини-органеллами - рибосомами, выполняющими функцию синтеза белков из аминокислот. Рибосомы считывают код с РНК и связывают аминокислоты в полипептидную цепочку белковой молекулы.
  Ни одна клетка никогда не сможет использовать всю информацию, содержащуюся в ДНК. Клетки разделяют работу между собой - они специализируются. Клетки мозга не станут вырабатывать инсулин, клетки печени не будут производить слюну, так же как и кожные клетки не станут строить костную ткань.
  То же происходит и с растениями: корневые клетки не вырабатывают зеленый хлорофилл, так же как и листья не производят пыльцу или нектар. Более того, процесс проявления генов (реализации заложенной в них информации, выражающейся в синтезе соответствующих белков) зависит от возраста: в молодых побегах не проявляются гены, связанные с созреванием плодов, и у взрослых людей обычно не вырастают новые зубы (хотя известны и исключения из этого правила).
  В целом, регуляция генов во многом зависит от среды, в которой находится клетка, а также связана со стадиями развития организма. Так что, если бы мы захотели, чтобы листья мака выработали красный цвет лепестков, нам бы не удалось достичь этого традиционными методами селекции, несмотря на то, что у листьев есть вся необходимая "генная" информация. Существует барьер, предотвращающий покраснение листьев. Этот барьер может быть обусловлен двумя причинами:
- "Красный" ген во всех клетках листьев недоступен для сигнальных активирующих молекул.
- Клеткам листьев не требуется красный цвет и они не посылают сигнал РНК копировать информацию. Поэтому сигнальная молекула с запросом не причаливает к "красной" сторожевой башне, чтобы активировать ген.
  Нетрудно догадаться, что существует способ обманывать растение и заставлять его краснеть, даже против собственной воли. Мы можем активировать красный ген, как Троянского коня, спрятанного за сторожевой башней другого гена. Но для того, чтобы достичь этого, нам придется разрезать гены и склеивать их по-иному. Вот здесь и прекращается селекция - и начинается генная инженерия.